
Abstract Analysis of a mixed biological stain by means
of highly polymorphic VNTR systems usually reveals a
profile composed of multiple markers. If the victim and one
or several suspects match the profile, the evidential strength
of the matches has to be very carefully analysed. The ap-
propriate methods for the statistical analysis of DNA pro-
files advanced recently were limited to cases with no rela-
tionship between the tested and non-tested persons. The
present paper extends the theory beyond this limitation.
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Introduction

DNA profiling of biological stains is now a central ana-
lytical method in forensic science which aims to identify
the assailants out of the group of tested persons i.e. victims
and suspects. The general formula for the statistical eval-
uation of DNA profiles with more than one contributor
has been proposed by Weir and co-authors [1]. This basic
approach comprises the entire statistical analysis of DNA
profiles, but suffers from the following limitations:

1. All unknown persons should belong to the same ethnic
group.

2. There should be no relationship between the non-tested
persons (unknowns) subjected to the statistical analysis
or between the unknowns and tested persons, irrespec-
tive of whether these tested persons have contributed to
the stain or not.

Thus, two cases not infrequent in the forensic practice, i.e.
contributions to the stains by members of different ethnic
groups and inclusion of information from relatives in the
course of the statistical analysis, are not dealt with by this
approach. Therefore the recent development was aimed at
extending the basic methods beyond these limitations. In
a recent paper [2] we have extended the theory to the case
where some unknown contributors may belong to differ-
ent ethnic groups. A further paper [3] described the exten-
sion of the theory to the case where two unknown con-
tributors may be related. The present paper extends the
theory to the case where one suspect who is unavailable
for testing, turns out to be not abstract and nameless, but is
a definite person whose relatives are available for the ge-
netic test.

Formulation of the problem and general expressions

We recall first the general formulation of the statistical
analysis of forensic DNA evidence in terms of the theory
of hypotheses testing [4] whereby we introduce all the
variables and specifications. A DNA mixture from a crime
scene – the stain – can contain contributions from a num-
ber of persons e.g. victims and/or assailants. A comparison
of the stain profile with the single person’s DNA profiles
taken from a group of tested persons (e.g. victims and sus-
pects) is performed with the aim of identifying the as-
sailants. However, such a comparison usually leaves room
for more than one alternative, i.e. more than one hypothe-
sis concerning the circumstances of the crime can be ad-
vanced. Each of the mutually excluding hypotheses H1,
H2,…,HN is a statement specifying members of a group of
persons, among them all tested persons and if necessary,
non-tested persons (unknowns) as either contributors or
non-contributors to the crime sample. The aim of the sta-
tistical analysis, i.e. testing of the hypotheses, is achieved
on the basis of the following considerations.

Let us assume that according to a current hypothesis
the contributors of a stain which shows m alleles A1,
A2,…,Am are n unknowns and a number of tested persons.
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The group of n unknown contributors can have only alle-
les from the stain and must have k “required alleles”
A1,A2,…,Ak (≤ m, k ≤ 2n) which are absent in the geno-
types of the tested contributors. The probability of this
event is designated p(n,k). The number of unknown per-
sons, n, the number k and the composition of the “required
alleles” and therefore the probabilities p(n,k) vary for dif-
ferent hypotheses. It has been shown [4] that the set of
probabilities p(n,k) (p(0,0) = 1) comprises the entire infor-
mation necessary to perform the statistical analysis. There-
fore, the whole analysis is based on the expressions for
the probability p(n,k).

The general expression for p(n,k) has the form [1, 4]:

(1)

Here the items T0(n), Ti(n), Tij(n)… are the composite
probabilities for n unknown persons to present alleles
from the stain according to the following rule: T0(n)
means that all alleles of the stain are presented, Ti(n)
means that all alleles of the stain except the “required al-
lele” Ai are presented, Tij(n) means that all alleles of the
stain except the “required alleles” Ai and Aj are presented
etc.

The set of contributors to a stain comprises two sub-
sets, the tested persons and the unknowns. Each tested
person is specified by the known genotype while the un-
knowns can show alleles from the stain with the probabil-
ities which the corresponding alleles have in the popula-
tion. The genotype frequencies of the unknowns are then
calculated according to the formula:

(2)

where the allele frequencies are designated by the lower-
case letters.

Thus, for one unknown:

(3)

which in the case of n independent (non-related) un-
knowns results in the well known Weir expression [1, 4]

(4)

where s is the sum of the frequencies of the alleles of the
stain

s = a1 + a2+…+am (5)

Usually an unknown contributor of a stain is an abstract
nameless person. However, sometimes this is not the case
and exactly such situations are subject to the present
study. Consider a case where some definitely known per-
son suspected to be a contributor of a stain cannot be
tested. Nonetheless, some information about the genotype
can be gained from the tests applied to the relatives. It can
happen that this information will exclude this suspect
from the contributors of the stain, for example, when both
alleles of one of his parents do not belong to the stain.

This specified suspect with tested relatives (we will
designate him as UR) is a member of a pedigree E, which
contains, among others, all his tested relatives. The fre-
quency of the genotype G of the UR, cannot be calculated
with the general expression (Eq. 2), but is defined by the
conditional probability

pE(G/R) = pE(G,R)/pE(R) (6)

Here R is the set of genotypes of all tested relatives of the
UR; pE(R) is the probability of the phenotypic pedigree E,
where the genotypes correspond to each tested relative
while any genotype which is compatible with the pedigree
corresponds to each of the non-tested members of the
pedigree (including the UR); pE(G,R) is identical to pE(R)
with the exception that the genotype of the UR is specified
as G.

The probability of the phenotypic pedigree is the sum
of the probabilities of all genotypic pedigrees which are
compatible with the phenotypic pedigree in question [5].

Now we can construct the special case of the general
expression (Eq. 4) for a stain containing UR and n–1 usual
unknowns:

(7)

where the items T0(UR), Ti(UR),… are described by the ex-
pressions analogous to the formulae (Eq. 3):

(8)

Working out a corresponding computer program for any
pedigree E and an arbitrary set R is straightforward. An
example of computations according to the formulae (Eqs.
7, 8) will be given at the end of the paper (numerical ex-
ample 2).

It turns out that in the case of a single tested relative all
the calculations are essentially simplified so that p(n,k)
can be presented by a rather simple formula. Therefore,
we consider in the following section this case for three
typical relationships i.e. child-parent, siblings, half-sib-
lings (child-grandparent).

1 1

0
1 1

( ) ( / ),

( ) ( / ),...
l r

r il i

m m

R E l r
l r

m m

i R E l r

T U p A A R

T U p A A R
= =

≠≠

= =
=

=

∑ ∑

∑ ∑

2( 1) 2( 1)
0

1
( , ) ( ) ( ) ( ) ...,

k
n n

R i R i
i

p n k T U s T U s a− −

=
= − − +∑

1

0
1 1 1

1
2 2 2

1 1 1

2
1

( , ) (1) (1) (1) ...

( ) ( )

... ( 1) ( ... ) ,

kk k
n n n

i ij
i i j i

kk k
n n n

i i j
i i j i

k n
k

p n k T T T

s s a s a a

s a a

−

= = = +

−

= = = +

= − + −

= − − + − −

− + − − − −

∑ ∑ ∑

∑ ∑ ∑

1 1

1
2 2

0
1 1 1 1 1

2

(1) ( ) 2

(1) ( ) ( ) ,...
l r

r il i

mm m m m

l r l rl
l r l l r l

m m

i l r i

T p A A a a a s

T p A A s a
= =

≠≠

−

= = = = = +
= = + =

= = −

∑ ∑ ∑ ∑ ∑

∑ ∑

{ 2 if ,
(

2 if ,
l

l r
l r

a l r
p A A

a a l r
==
≠

1

0 12..
1 1 1

( , ) ( ) ( ) ( ) ...( 1) ( )
k k k

k
i ij k

i i j i

p n k T n T n T n T n
−

= = = +
= − + − −∑ ∑ ∑

N. Fukshansky, W. Bär: Biostatistics of mixtures 79



The case of one tested relative

Here the entire set R is reduced to the genotype of one
tested person and pE(R) is just the frequency of this geno-
type R, i.e. p(R), while the joint probability pE(G,R) is the
probability of the corresponding phenotypic pedigree,
where two persons – the UR and his tested relative – are
specified by the two genotypes, G and R, respectively.

The first step is to compute the match probabilities
pE(G/R) [5]. As an example we consider a child-parent
duo under the condition that the parent (tested relative)
shows genotype AA. In this case

pE(AA/AA) = PE(AA,AA)/p(AA) = a3/a2 = a,

pE(AX/AA) = PE(AX,AA)/p(AA) = a2 · x/a2 = x, (9)

pE(XY/AA) = PE(XY,AA)/p(AA) = 0 (exclusion).

Here any alleles not identical to those of the tested relative
are specified as X, Y. The same specification holds in
Table 1 where the magnitude pE(G/R) is calculated for the
three relationships – child-parent, siblings, half-siblings
(child-grandparent).

The next step is to compute the items T0(UR), Ti(UR),
Tij(UR),… for the formula (Eq. 7). The computation de-
pends on the type of the alleles found in the test of the rel-
ative. These alleles can generally belong to three different
types:

1. The set of required alleles of the stain: A1, A2,…,Ak

2. The set of non-required alleles of the stain: Ak+1,…,Am

3. The set of alleles of the considered system which are
not contained in the stain.

As will be seen later, it is necessary only for the set 1 to
distinguish what concrete allele Ai out of the correspond-
ing set {Ai}, i = 1,…,k has been found in the test. For the
sets 2 and 3 it is not the precise specification of the alleles
which is important but solely being part of the set. There-
fore we designate all the alleles from the sets 2 and 3 as B

and Z, respectively. Thus, for example, R = AiB means
that the tested relative shows allele Ai from the set 1 and
some allele from the set 2.

Altogether seven different cases can be distinguished

1. R = AiAi

2. R = AiAj (i ≠ j)
3. R = AiB
4. R = AiZ
5. R = BB
6. R = BZ
7. R = ZZ

It turns out that for each kind of relationship an explicit sys-
tem of recurrent correlations can be constructed which pro-
vides direct and simple formulae yielding p(n,k) for any
given n and k. To this end we introduce the following func-
tion L(r,k,s) of the frequencies of required alleles ai (i =

1,…,k), ai and an integer-valued parameter r:

(10)

In the special case r = 2n this function, L(2n,k,s), is noth-
ing else then Weir’s formula (Eq. 4) for p(n,k) applicable
in the situation where all the unknowns are unrelated and
have no tested relatives. Further, we designate expressions
arising from (Eq. 10) upon elimination of all items con-
taining ai and both ai and aj as Li(r,k–1,s) and Lij(r,k–2,s),
respectively.

We exemplify all the considerations leading to the ex-
plicit recurrent formulae using the case of siblings and un-
der the condition that the tested sibling is homozygous
with respect to the allele in question. We consider two
possibilities arising when the allele found in the test be-
longs to the sets 1 and 2.

Set 1 Assume that the allele found in the test belongs to
the set 1. Let us put for the sake of simplicity R = A1A1.
Using the expression (Eq. 8) and singling out all the items
containing the allele A1 we compute T0(UR):

(11)

Applying Table 1 we obtain

(12)

By analogy formulae for Ti(UR), Tij(UR),… arise for i, j ≠ 1:

Ti(UR) = [(s – ai)2 + 2(s – ai) +1]/4,
Tij(UR) = [(s – ai – aj)2 + 2(s – ai – aj) +1]/4,… (13)
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Table 1 The probabilities pE(G/R) where G is the genotype of the
UR and R is the genotype of his tested relative (Capital letters rep-
resent the alleles, the corresponding lower-case letters represent
the frequencies in the population)

R G Child- Siblings Half-siblings 
parent (Child-grand-

parent)

AA AA a (1 + a)2/4 a(1 + a)/2
AX x (1 + a)x/2 (1 + 2a)x/2
XX 0 x2/4 x2/2
XY 0 xy/2 xy

AB AA a/2 a(1 + a)/4 a(1 + 2a)/4
BB b/2 b(1 + b)/4 b(1 + 2b)/4
AB (a + b)/2 (1 + a + b + 2ab)/4 (a + b + 4ab)/4
AX x/2 x(1 + 2a)/4 x(1 + 4a)/4
BX x/2 x(1 + 2b)/4 x(1 + 4b)/4
XX 0 x2/4 x2/2
XY 0 xy/2 xy



When computing T1(UR), T1i(UR),… characters of the ex-
pression (Eq. 11) containing A1 vanish

(14)

Substituting the above expressions into formula (Eq. 7)
and using the definitions of L(r,k,s) and L1(r,k–1,s) we ob-
tain

p(n,k) = [L(2n,k,s) + 2L1(2n – 1,k – 1,s) 
+ L1(2n – 2,k – 1,s)]/4 (15)

Set 2 Assume that the allele found in the test belongs to
the set 2. Let us take R = AmAm. By analogy to the previ-
ous case we use (Eq. 8) and Table 1. This yields:

(16)

which leads to the following expression for p(n,k)

p(n,k) = [L(2n,k,s) + 2L(2n – 1,k,s) 

+ L(2n – 2,k,s)]/4
(17)

Thus one can see that p(n,k) does not depend of am, i.e.
that solely the fact that the allele shown by the relative be-
longs to the set 2, but not the concrete nature of this allele,
is of importance.

Arguing by analogy one can derive the corresponding
formulae for all three modi of relationship and for all seven
types of the genotype of the tested relative. All these ex-
pressions are presented in Table 2. The three modi of rela-
tionship – child-parent, siblings, half-siblings (child-grand-
parent) – are designated as E1, E2 and E3 respectively.

Numerical examples

Example 1

Consider a stain showing five alleles A1, A2,…A5 which is
produced by three persons: the victim (V) with the geno-
type A4A5 and two assailants (Table 3). One suspect (UR)
is known but unavailable for testing. The information on
his genotype is given by one of his relatives with the
genotype R. The problem to be solved is whether UR is a
contributor of the stain.

Two hypotheses settle the matter.

H1: V, UR and one unknown are the contributors of the
stain.

H2: V and two unknowns are the contributors of the stain.
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Table 2 The expressions for
p(n,k) for seven types of the
genotypes (R) of the tested
relative (The three modi of re-
lationship – child-parent, sib-
lings, half-siblings (child-
grandparent) – are designated
as E1, E2 and E3,respectively)

R E p(n,k)

1 AiAi E1 Li(2n – 1,k – 1,s)
E2 [L(2n,k,s) + 2 Li(2n – 1,k – 1,s) + Li(2n – 2,k – 1,s)]/4
E3 [L(2n,k,s) + Li(2n – 1,k – 1,s)]/2

2 AiAj E1 [Li(2n – 1,k – 1,s) + Lj(2n – 1,k – 1,s)]/2
E2 [L(2n,k,s) + Li(2n – 1,k – 1,s) + Lj(2n – 1,k – 1,s) + Lij(2n – 2,k – 2,s)]/4
E3 [2 L(2n,k,s) + Li(2n – 1,k – 1,s) + Lj(2n – 1,k – 1,s)]/4

3 AiB E1 [L(2n – 1,k,s) + Li(2n – 1,k – 1,s)]/2
E2 [L(2n,k,s) + L(2n – 1,k,s) + Li(2n – 2,k – 1,s)]/4
E3 [2L(2n,k,s) + L(2n – 1,k,s) + Li(2n – 1,k – 1,s)]/4

4 AiZ E1 Li(2n – 1,k – 1,s)/2
E2 [L(2n,k,s) + Li(2n – 1,k – 1,s)]/4
E3 [2L(2n,k,s) + Li(2n – 1,k – 1,s)]/4

5 BB E1 L(2n – 1,k,s)
E2 [L(2n,k,s) + 2L(2n – 1,k,s) + L(2n – 2,k,s)]/4
E3 [L(2n,k,s) + L(2n – 1,k,s)]/2

6 BZ E1 L(2n – 1,k,s)/2
E2 [L(2n,k,s) + L(2n – 1,k,s)]/4
E3 [2L(2n,k,s) + L(2n – 1,k,s)]/4

7 ZZ E1 0
E2 L(2n,k,s)/4
E3 L(2n,k,s)/2



The likelihood quotients X1/X2 for three modi of relation-
ship and for seven types of the genotype of the tested rel-
ative are given in Table 4. Here X2 = L(4,3,s) and X1 is
computed according to Table 2 (n = 2; k = 3).

Example 2

Consider the preceding example but in a more general for-
mulation where UR has not one but two tested relatives.
Assume that these relatives are: a parent with the ho-
mozygous genotype AA and a child with the genotype AB
where A ≠ B.

The pedigree E is shown in Fig.1. It is a child-grand-
parent duo with

R = {AA,AB} and pE(R) = a2b(1+2a)/2 (18)

The frequencies of the possible genotypes of UR are com-
puted according to formula (Eq. 6), which yields

pE(AA/R) = 2a/(1 + 2a)

pE(AB/R) = (a + b)/(1 + 2a)

pE(AX/R) = x/(1 + 2a) \quad X ≠ A,B

(19)

Let us apply the above formulae under the assumption
that A belongs to the set 1 (A = A1) and B does not belong
to the stain (B = Z).

Using the expression (Eq. 8) and singling out all the
items containing the allele A1 we compute T0(UR):

(20)

Furthermore:

T1(UR) = T12(UR) = T13(UR) = T123(UR) = 0;

T2(UR) = (a1 + s – a2)/(1 + 2a1);

T3(UR) = (a1 + s – a3)/(1 + 2a1);

T23(UR) = (a1 + s – a2 – a3)/(1 + 2a1)

(21)

Substituting these expressions into formula (Eq. 7) (n = 2,
k = 3) we obtain an expression for X1, which can be pre-
sented in a convenient form using the functions L(r,k,s)
and Li(r,k–1,s):

X1 = [a1L1(2,2,s) + L1(3,2,s)]/(1 + 2a1);

X2 = L(4,3,s)
(22)

Thus we obtain the likelihood quotient:

X1/X2 = 4.8637 (23)

Note that for the situation with a single tested relative we
have pointed out, when the allele of this relative belongs
to the set 2, then solely the fact of belonging to this set but
not the precise specification of the allele is of importance.
In the general situation with more than one tested relative
this is not the case. For example, in our case when A = A5,
then

T0(UR) = (a5 + s)/(1 + 2a5) and

X1 = [a5L(2,3,s) + L(3,3,s)]/(1 + 2a5)
(24)
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Table 3 The stain. Three re-
quired alleles A1, A2, A3; k = 3 Allele Frequency Victim

A1 0.05
A2 0.22
A3 0.14
A4 0.18 +
A5 0.21 +

s 0.80

Table 4 The likelihood quotients for seven types of the genotypes
(R) of the tested relative (The four modi of relationship – child-
parent, siblings, half-siblings (child-grandparent), not related – are
designated E1, E2, E3 and E4, respectively)

Genotype Mode of relationship

R E1 E2 E3 E4

A1A1 5.2101 3.5553 3.1050 1.0000
A1A2 3.2783 4.2128 2.1391 1.0000
A1B 2.8151 2.3578 1.9075 1.0000
A1Z 2.6050 1.5525 1.8025 1.0000
BB 0.4202 0.4601 0.7101 1.0000
BZ 0.2101 0.3550 0.6050 1.0000
ZZ 0.0000 0.2500 0.5000 1.0000

Fig.1 Pedigree E with two tested relatives of the unavailable sus-
pect UR: a parent with genotype AA and a child with genotype AB
(A ≠ B). See also numerical example 2


